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The particular features of the propagation of the seismic energy of elastic waves in anisotropic media with four constants of 
elasticity, depending on the directions of motion of the waves and the ratios of the constants of elasticity for all practical media 
of the anisotropy class considered, are investigated. A direct connection is established behveen the formation of acute-angled 
edges on the fronts of quasi-transverse waves from point sources and the distinctive features of the propagation of the energy 
of the waves under certain conditions for the constants of elasticity. Q 2003 Elsevier Ltd. All rights reserved. 

A study of the particular features of the propagation of the energy of plane elastic waves in auisotropic 
media is of particular interest, since the vectors of the energy flux density, from the physical point of 
view, determine the directions of propagation of the wave fronts, and almost all seismic fields can be 
considered approximately as locally plane waves. Some problems of the propagation of seismic energy 
in anisotropic media were considered previously in [l-5], but the dependence of the propagation of 
the energy fluxes on the directions of motion of the waves and on the ratios of the constants of elasticity 
of the media were not investigated. 

1. PLANE WAVES IN ANISOTROPIC MEDIA 

We will consider an anisotropic medium with four constants of elasticity. Thex, y, z axes of a rectangular 
system of coordinates coincide with the axes of elastic symmetry of the medium, and the oscillations 
are independent of the z coordinate. 

The equations of motion in terms of displacements have the form [6] 

au,, + du,, + cvx,, = ut, cu,,,+dv,,+ bv,, = v, (1.1) 

The ratios of the constants of elasticity to the density of the medium 

a = Cl,lp, b = C,,/p, d = C&p, c = (C,,+C,,)lp 

satisfy the necessary and sufficient conditions for the form of the elastic energy to be positive-definite 

a>d, b>d, d>O, K, = ab-(c-d)*>0 w 

The solutions of Eqs (l.l), expressing plane waves, have the form [6] 

uk = (t-k- cehk)w,(~,), v, = -(Pk-ce&)wk(Qk) 

pk = ae*+dli~-1, ,-k = de2 + 611; - 1, pkrk = C28*x; 

Qk = t-kh+h,y, k = 1,2 

where 

h, = [A + (-l)‘(A’- B)1R]1n/(2bd)‘n 

A = (b+d)-ZB2, B = 4abd2(lla-62)(lld-82), L = ab+d*-c* 

tw 

(1.4) 
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Fig. 1 

The function hi and A2 are branches of the algebraic function h, uniquely defined on the Riemann 
surface. The functions w1 and w2 are arbitrary continuous twice-differentiable functions, if the coefficients 
in them with variable values are real; if some of these coefficients in some region of space n, y, t are 
complex quantities, wk will be regarded as analytical functions in this region. 

The inner radicals of functions (1.4) have branching points [7, 81 

0; = *{ [Mf (-4bdc2N,)1n]/(K,K2)}‘n 

Nl = (a-d)(b-d)-c2, K, = ~~b-(c-d)~, K, = ab-(~+d)~ 

M = bN,+dN,, N7 = (b-d)2-c2 

(1.5) 

which may be complex, imaginary or real depending on the ratios of the constants of elasticity. 
When the condition 

N, = (a-d)b-c2>0 (1.6) 

is satisfied [7, 81, the branching points for the outer radicals of (1.4) are the points Or = _+u-i’* when 
k = 1 and the points Cl2 = +d- I/* when k = 2. In this case the Riemann surface consists of planes 
8i and Cl2 with cuts (-u-*‘~, +a-‘“? ) and (-Cl’*, +d-l”), joined crosswise along the cuts connecting the 
branching points 0,“. In Fig. 1 we show the Riemann surface for the case when the branching points Cl: 
are pair wise complex conjugate. 

On the edges of the cuts (-c.z-‘~, +a-“‘*) of the el plane and (-&‘*, +a”*) of the e2 plane the functions 
AZ and A2 have real values, and the functions (1.3) express real plane waves: quasi-longitudinal when 
k = 1 and quasi-transverse when k = 2. 

When N2 < 0 the outer radical of the function hi has four branching points 8r = +a-“* and 
Cl2 = +d-I’*, but the outer radical of the function A2 has no branching points. Of the four branching 
points for the inner radical of the functions 3Ll and 3L2 we have the following: two real S$ and two 
imaginary k@, where 0: > d 1’2 The function hi is single valued in the Or plane with cuts (_a?‘*, +a-*‘*), . 
( kfl” , key) and (k@, +- -) along the real axis and with cuts (kt$!, kioo) along the imaginary axis. 
The function 3L2 is single valued in the t3* is single valued in the Cl2 plane with cuts (-@, +@) and 
(+ t$, 2 -) along the real axis and with cuts ( f 8’ *, eioo) along the imaginary axis. The Riemann surface 
(Fig. 2) consists of the 0i and f3* planes, joined crosswise along the edges of the cuts (k@, + -) and 
(ke” *, S=). On the edges of the cuts (a-i”, +a-l’*), (~rd’“, H$) of the 8i plane and (-Of, +@) of 
the Cl2 plane the functions A1 and A2 have real values. The functions (1.3) express real plane waves [6]: 
quasi-longitudinal when k = 1 on the edges of the cut (-cz-~‘*, +a-l’* ) of the 8i plane, quasi-transverse 
when k = 2 on the edges of the cut (-C$, +f$) of the e2 plane and when k = 1 on the edges of the cuts 
(&d-r’*, It 8:) of the Or plane. 
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Fig. 2 

2. THE ENERGY FLUXES AND THE RAY VELOCITY 

The propagation of the elastic waves is related to the propagation of energy in the deformed medium. 
The projections of the energy flux density vector onto the coordinate axes have the form [?I 

s, = -[up, + ~,~,J9 s, = -b$$ + qJ (2.1) 

where ut and vy are the derivatives of the components of the displacements with respect to time. 
The components of the stresses for the case considered can be expressed in terms of the derivatives 

of the components of the displacements by the formulae 

0, = p[au,+(c-d)u,l, 6, = p[(c-d)u,+bu,], ~,,z = pd[u,+uJ (2.2) 

From expressions (2.1) and (2.2) we have 

s, = -p{u,[au, + (c - my1 + W(u, + UJII 
s, = -pbtWy + u,)l + u,[(c - 4u, + buy11 (2.3) 

Substituting the values of the derivatives of the functions (1.3) into formulae (2.3), we obtain the 
following expressions for the projections onto the coordinate axes of the energy flux density vectors of 
the quasi-longitudinal and quasi-transverse waves 

where 

Qk = 2ad0* + Lh,2 - (a + d), M, = 2bdA; + LO* - (b + d) (2.5) 

The phase velocities of the waves (1.3), which determine the propagation of the wave fronts in the 
directions of the normals, are expressed by the formulae [7, 101 

bk = (cl2 + hy (2.6) 

The ray velocities of the waves (1.3), which define the propagation of the wave fronts in the directions 
of the energy flux density vectors, are related to the phase velocities by the relations 131 

b, = tn,. ck) (2.7) 

where ck are the ray velocity vectors. By relations (2.6) and (2.7) the ray velocities are defined by the 
formulae 

Ck = [(cl2 + h,2)1/2COScpk]-1 (23) 
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where (pk are the angles formed by the vectors of the ray velocities with the vectors of the phase 
velocities. 

For any directions of propagation of the waves (1.3), the ray and phase velocities satisfy the conditions 
ck 2 bk. 

We will denote the angles formed by the vectors of the phase velocities, the ray velocities and the 
displacements of the particles of the medium with the negative semi-axisy by ok, pk, yk, which, by relations 
(1.3) and (2.4), are given by the formulae 

tga, = 03L;‘, tgPk = eQk(&MJ1r tgyk = (rk - ceh,)(p, - ceX,>-’ (2.9) 

The angles (pk, formed by the vectors of the ray velocities with the vectors of the phase velocities, 
taking into aCCOUnt that (pk = & - ok, are giVen by the formulae 

(2.10) 

(the angles are measured from the normals to the wave fronts in an anticlockwise direction). 
The features of the propagation of the energy of the elastic waves are determined by the quantities 

Nr, N2, K2 and M, and also by the quantities 

N3 = (b-W-c’, N4 = a-d-c, N, = b-d-c, N6 = (a-d)‘-c’, 

N, = (b-d)‘--* 
(2.11) 

3. ANALYSIS OF THE SOLUTIONS WHEN N2 > 0 AND N3 > 0 

When N2 > 0 the solutions obtained are uniquely defined on the Riemann surface shown in Fig. 1. 
Since the x and y axes coincide with the axes of elastic symmetry of the medium, the wave processes 
considered can be investigated sufficiently for values of 8 in the ranges 

OIO<a-‘n, OI0<d-” (3.1) 

of the upper edges o the cuts of the (I1 and O2 planes (Fig. 1). 
On the boundaries of the ranges (3.1) the components of the energy flux density vectors (2.4) of the 

quasi-longitudinal waves (k = 1) and quasi-transverse waves (k = 2) take the values 

L(O) = 0, S,,(O) = -p(b - d)2b-3n[w;(S2;)]2 

&l(a-‘n) = p(a-d)2a-3n[w~(Q:)]2, S,,(a-‘“) = 0 

MO) = 0, S,,(O) = -p(b - d)2d-3n[w;(n;)]2 

Md-ln) = p(a -d)263n[~~(Q~)]2, q,(d-lo) = 0 
0 

4 = t + b-lny, Q: = t-a -I/z x, $29 = t +d-lny, a; = t-d-lnx 

(34 

Consequently, the energy flux density vectors of the quasi-longitudinal waves (k = 1) and quasi- 
transverse waves (k = 2) when 8 = 0 are directed along the negative y semi-axis, and when 8 = a-l’* 
and 8 = d-n2 they are directed along the positive x semi-axis. 

The functions 3Lr and & in the corresponding ranges (3.1) decrease continuously in the intervals [8] 

b%h, 20, d-‘%A220 

The function& and rk (k = 1, 2) in the corresponding ranges (3.1) satisfy the conditions 

p1<0, r,<O, p2>0. r2>0 

At the boundaries of the regions (3.1) the function Qk and i& take the values 

(3.3) 

(3.4) 
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Q,(O) = -R,b-‘, Q,(c-?) = -(a-d), M,(O) = -(b-d) 

M,(a-I”) = -R,a-‘, Q*(O) = N,d-‘, Q2(d-l”) = (a-d) (3.5) 

M*(O) = (b-d), M,(d-ln) = N,d’, R, = (a-d)d+& R, = (b-d)d+c* 

The derivatives of the functions Qk and Mk have the form 

Qk, = BA,(bd)-‘, M,, = 28B,, D = [K,K204-2M92 + (b-d)*]ln 

A, = - K, K, + (-l)kL(K, K28* - M)D-I, B, = (-l)k(K1 K,8* - M)D-’ 
(3.6) 

The function D, apart from a positive constant factor, is the inner radical in expression (1.4), which 
is positive in the intervals (3.1). 

On the boundaries of the intervals (3.1) the functionsAk and Bk take the values 

A,(O) = -F,, A,@-‘“) = -a(b+d)R;‘F,, A*(O) = -F, 

A*( d-In) = d(b + d)N;‘F,, B,(O) = (b-d)-‘M 

B&I-“*) = -R;‘F,, B*(O) = -(b-d)-‘M, B,(d-“) = N,F,, 

where 

F, = K,K2-aM, F, = K,K,-dM, F, = K,K2-(b-d)-‘LM 

F4 = K,K,-(b+d)-‘LM, F, = K,K,+(b-d)-‘LM 

(3.7) 

(3.8) 

It can be shown that when N2 > 0 the coefficients of M in expressions (3.8) satisfy the conditions 

a>(b-d)-‘L>(b+d)-‘L>d (3.9) 

if 

R, = (c*-d*) -ad>0 (3.10) 

Where R, c 0 under conditions (3.9) we have (b - d)-‘L > a. 
Expressions (3.8) reduce to the form 

Fl = bdN&c*-d*)N,, F, = [(ab - c*) + (a - d)d]N, + d*N, 

F3 = 2d(b-d)-‘[(c*-d*)N, -adN,], F4 = 2bd[aN, +dN,](b+d)-’ (3.11) 

F5 = 2b(b-d)-‘{[(ab-c2)+(b-d)d]N, +d*N,} 

The derivatives of the functions Ak and Bk have the same values, apart from a constant factor 
L > 0, 

Ak, = LB,, = (-l)k8bdc2LN,8D-3n (3.12) 

When N2 > 0 and N3 > 0, the quantity Nr may have different signs. 

Case 1. When N1 > 0, the derivatives (3.12) satisfy the conditions 

A,cO, B,,<O, A,,>O, B,,>O 

Taking conditions (1.2) into account, from the equation 

(3.13) 

(3.14) (b - d)*K, K, -M= = 4bdc2N, 
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we conclude that K? > 0. When Nr > 0, the quantities N, and Nj may have the same (positive) signs 
or opposite signs. 

Case l(a). If lv, > 0 and NS > 0, we have NC, > 0 and NT > 0, and according to expressions (3.11) 
& > 0 when i = 2,4 and 5, while Fr and Fj may take positive and negative values. It follows from (1.5) 
that M > 0. 

When M > 0, K2 > 0, R3 > 0, according to the conditions (3.9) the following combinations of the 
distribution of the values of Fi are possible 

F,cO, F,>F,>F,>F,>O 

F,>F,>F,>F,>F,>O (3.15) 
F,<F,<O, F,>F,>F,>O 

When the first combination of conditions (3.15) is satisfied, by expressions (3.7) we have 

A,(O)<O, A&-‘“)<O, B,(O)>O, B&z-‘“)>0 

A2(d-‘“) > 0, B2(d-1n) > 0 
(3.16) 

A2(0) < 0, B2(0) < 0, 

It follows from relations (3.13) and (3.16) that in the intervals (3.1) the functions& and Bk satisfy 
the conditions 

A,W<o, B,(e)>O, A,@)<0 (e<6;2), A,(e)>0 (Ebe$) 

B,(e)<0 (e<e;), B,(e)>0 (e>e;) 
(3.17) 

where eT2 and Cl,* are the zeros of the functionsAz(e) and Bz(t3). 
It follows from relations (3.6) and (3.17) that the derivatives of the functions Qk and Mk in the intervals 

(3.1) satisfy the conditions 

e,,a ~,,a eze<o we;), e,,>o (e>ef2) 
M,,<o (e<e:), M,,>o (e>e,*) 

(3.18) 

At the boundaries of the intervals (3.1), according to expressions (3.5), the functions Qr and&f1 have 
negative values while Q2 and M2 have positive values. 

The functions Qz and M2 have a minimum at the points t3T2 and e,* respectively. From the equations 
AZ(&) = 0 and B2(ez) = 0 the extreme points can be represented by the expressions 

0; = [M(K,K,) -1 -1 +L ~7~1 
1R 

, e: = [M(K,K~)-‘I’~ (3.19) 

where DT2 is the value of the function D, defined by expression (3.6) for eT2, when DT2 > 0. 
Since the function Bz at the point 0 = a J” is less than zero, by expressions (3.19) we have the following 

distribution of the extreme points on the real Cl axis 

a -‘I* < e,* < e;12 < d-in 

The minimum values of the functions Q, and M2 satisfy the conditions 

(3.20) 

Q2(e;E,) = 2adL-‘Dr2 >O, M2(e;) = Df2>0 (3.21) 

It follows from relations (3.5) and (3.18)-(3.21) that the functions Qr and Mr in the first interval (3.1) 
have negative values, the function Q, decreases continuously, and the function Mr increases continuously. 
In the first interval of (3.1), Q2 and M2 are positive functions, which take minimum values at the points 
eT2 and f3$ satisfying condition (3.20). 

Since at the boundaries of the intervals (3.1) the differences in the values (3.5) of the functions Qk 
and Mk 

(M,(O)-JQ,(O)J = b-IN,, )Q,(iv2)l - lM,(a-‘“)I = a-IN6 

Q2UV - M2(0) = d-‘N1, M2(d-“2) - Q2(d-In) = d-‘N, 
(3.22) 
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are greater than zero, the graphs of the functions Qk and Mk intersect and have the form shown in 
Fig. 3(a). The points of intersection are defined by the conditions Qk(6&) = n/rk(&) and have the 
coordinates 

8, = [(b-d-c)K;y2, 62 = [(b-d+C)K;y2 (3.23) 

The values of the functions Qk and Mk at the points of intersection of the graphs are given by the 
expressions 

Q,(k) = M,(h) = -c, Q2(62) = ~~(6~) = c (3.24) 

It was established in [ 101 that when N4 >_ 0 and N, > 0 the phase velocities of the quasi-longitudinal 
waves take minimum values at the point 0t, and the quasi-transverse waves take maximum values at 
the points &. Consequently, the points of intersection of the graphs of Qk and Mk correspond to waves 
with extreme phase velocities. 

If Fr > 0, then according to relations (3.8) and (3.9) the second condition of (3.15) is satisfied. 
Repeating the discussion carried out for the first combination of conditions (3.15), we obtain the 
conditions for the derivatives of the functions Qk and Mk, which differ from conditions (3.18) solely in 
the fact that the condition Ml,) > 0 is changed into 

M,,>O (0,dq). M,,<O (k-0,“) (3.25) 
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The extreme points, defined by expressions (3.19) satisfy the condition 

e: = 0; < .-‘I2 < f3;r, < d-la (3.26) 

Hence, it also follows from expressions (3.5) and (3.22) that the graphs of the functions Qk and Mk 
have the form shown in Fig. 3(a). The graph of the function Ml differs in the fact that at the point (37 
it has a maximum Mr(f3;) = -DT < 0; unlike distribution (3.20) the extreme points (3.19) satisfy condition 
(3.26). 

If F3 < 0, then by relations (3.8) and (3.9) the third condition of (3.15) is satisfied. The derivatives 
of the functions Qk and Mk satisfy conditions which differ from conditions (3.18) in the fact that the 
first condition is replaced by 

The extreme points (3.9) satisfy the condition 

t3;1 CU -In < 0; < e:, < 6’” (3.28) 

Hence it also follows from expressions (3.5) and (3.22) that the graphs of the functions Qk and 
Mk have the form shown in Fig. 3(a), and the graph of the function Q, differs by having a maximum 
Q,(&) = -2ad~!,-~D& < 0 at the point eT1. 

Where R3 < 0, conditions (3.9) and (3.15) are only slightly changed: in condition (3.9) we have 
(b - d)-lL > a and in conditions (3.15) F3 c F1. It can be shown that in these cases the graphs of the 
functions Qk and Mk have a form similar to the graphs in Fig. 3(a). 

Hence, when N4 > 0 and Ns > 0 the functions Qk and Mk, defined in the intervals (3.1) satisfy the 
following conditions: 

in the interval (0, u-t’*) 

M,<Q,<O (hi&), Q,<M,<O @ii,) (3.29) 

in the interval (0, 6’“) 

Q,>M,>O (fdz), M,>Q,>O (0>&) (3.30) 

In the intervals (3.1) the angles aI and a2, which determine the directions of the phase velocity vectors 
of the quasi-longitudinal (k = 1) and quasi-transverse (k = 2) waves (1.3) increase monotonically, 
according to relations (2.9) and (3.3). 

When the waves (1.3) travel in the directions of the axes of elastic symmetryy andx of the medium, 
the directions of the phase and ray velocity vectors and of the displacements of the particles of the 
medium, according to relations (2.9) and (2.10) are determined by the following angles: 

when 8 = 0 

ak = pk = <pk = 0 (k = 1,2), y, = 0, y* = X/2 

when 8 = a-l’* and 8 = d-l’* 

(3.31) 

a, = Bk = x/2, <Pk = 0, YI = xJ2, Y2 = 0 (3.32) 

It follows from relations (3.31) and (3.32) that in this case the directions of the phase and ray velocity 
vectors of the quasi-longitudinal and quasi-transverse waves and of the displacement vectors of the 
particles of the medium of the quasi-longitudinal waves coincide with the directions of the normals to 
the wave fronts. The directions of the displacement vectors of the quasi-transverse waves coincide with 
the wave fronts. Consequently, in the directions of the axes of elastic symmetry the quasi-longitudinal 
and quasi-transverse waves become purely longitudinal and purely transverse waves. 

For the waves (1.3) with extreme phase velocities (Fig. 3a) for values of 8 = i$, defined by formulae 
(3.23) and of the corresponding points of intersection of the graphs of the functions Qk and Mk 
(Fig. 3a), the directions of the phase and ray velocity vectors and of the displacements of the particles 
of the medium are determined by the following angles 
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82 = 
-, l/2 

a2 = arctg(NgN, ) , y2 = ~12 + ii, (3.33) 

N, = a-d+c, N, = b-d+c 

It follows from relations (3.33) that the quasi-longitudinal and quasi-transverse waves in the directions 
&i and & which are not the directions of the axes of elastic symmetry of the medium, as also in the 
directions of the axes of symmetry, change into purely longitudinal and purely transverse waves, since the 
phase and ray velocity vectors of the quasi-longitudinal and quasi-transverse waves and the displacement 
vector of the particles of the medium of the quasi-longitudinal wave coincide with the normals to the wave 
fronts, while the displacement vector of the quasi-transverse wave coincides with the wave front. 

From formulae (2.9) and (2.10) and conditions (3.29) and (3.30) we have the following conditions 
for the directions of the phase and-ray velocity vectors: 

on the segments (0, 6,) and (0, 0,) 

Oc&<a,cG,, cp,cO, Oca2<P2<0129 q2>0 

on the segments (&, a-l/2) and (&, a”‘) 

(3.34) 

&,<a,<f3,<7c/2, 'p,>O, ii,c~,~a,<d2, (p2<0 (3.35) 

The phase velocity of the quasi-longitudinal wave in the direction al = a1 has the minimum value, 
and the phase velocity of the quasi-transverse wave in the direction a2 = a2 has the maximum value. 
It follows from conditions (3.34) and (3.35) that the ray velocity vectors (the energy fluxes) deviate from 
the directions of the normals to the wave fronts in the direction of increasing phase velocities. This 
property of the energy fluxes explains the reason for the formation of acute-angled edges in the directions 
a2 = a2 on the fronts of the quasi-transverse waves from point sources in media for which N4 > 0 and 
Ns > 0 when the corresponding condition (see [7], condition (2.8), is satisfied, since from the physical 
point of view the energy flux density vectors determine the directions of propagation of the wave fronts. 
For example, if at the initial instant of time a quasi-transverse wave with an oval wave front is excited, 
on parts of the wave front adjacent to the direction a2 = a2 with maximum phase velocity, the energy 
flux density vectors deviate from the normals to the wave front in the direction a1 = &, forming acute- 
angled edges [7, Fig. 21. 

Case l(b). If N4 > 0 and iVs < 0 when Ni > 0, then 

a > b, N,>O, N,<O, K,>O (3.36) 

The value of M, according to formulae (1.5), can have different signs. 
When K2 > 0 and M < 0, according to expressions (3.8) Fi > 0 (i = 1, . . . ,4) and F5 can have different 

signs. 
If F5 < 0, by repeating the discussions carried out for the first combination of conditions (3.15) we 

obtain 
Q,,<O, M,,<Ov Q,,>O, M,e’O (3.37) 

Taking into account the fact that N6 > 0 and N7 < 0, we conclude from relations (3.5) (3.22) and 
(3.37) that the graphs of the function Qk and Mk have the form shown in Fig. 3(b). The functions Qi 
and Mi are negative continuously decreasing functions which satisfy the condition Qi < Mi. The functions 
Qz and M2 ar_e positive continuously increasingJunctions, which satisfy the conditions Q2 > M2 on the 
segment (0, 0,) and M2 > Q2 on the segment (e,, 6-1’2). 

When F5 > 0 we arrive at conditions which differ from (3.37) by having the third condition replaced by 

Q,,<O W’<f$), Q,,>o (e>e;“,) (3.38) 

Hence it follows that the graphs of Qk and Mk differ only slightly from the graphs in Fig. 3(b). Only 
the gra h of the function Q2, which has a positive minimum at the point eT2 on the segment 
( B2,d- 2 ) has a considerable difference; the conditions for the functions Q2 and M2 on the segment 
(0, d-“2) do not change. 
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When M > 0 and K2 > 0, according to expressions (3.8), F5 > 0; it follows from relations (3.14) and 
(3.36) that F; > 0 (i = 2, 3, 4) and F1 can have different signs. According to expressions (3.9) when 
F1 < 0 the values of Fi satisfy the first condition of (3.15). In this case the derivatives of the functions 
Qk and Mk satisfy conditions (3.18). 

Taking inequalities (3.36) into account, we can conclude from relations (3.5), (3.18) and (3.22) that 
the graphs of the functions Q2 and Mz have the form shown in Fig. 3(a), and the functions Q2 and Mz 
satisfy conditions (3.30) in the segment (0, 6”2). The graphs of the functions Qi and Mr have a form 
similar to the graphs shown in Fig. 3(b), and on the segment (0, U-I/~) the following condition is satisfied 

Q,<M,<O (3.39) 

It can be shown that we have a similar picture when F1 > 0. 
Hence, when Ni > 0, N4 > 0 and Ns < 0, the functions Qk and ybsatisfy condition (3.39) on the 

segment (0, a-l’*), and satisfy conditions (3.30) on the segment (0, d ). 
In this case [lo] the phase velocities of the quasi-longitudinal waves inside the segment (0, a-112) have 

no extremal values, while the phase velocities of the quasi-transverse waves inside the segment (0, a’“) 
have a maximum when 8 = $i2. The phase velocity of the quasi-longitudinal wave has a minimum when 
0 = 0 in the direction a = 0, and a maximum when 0 = a-‘” in the direction al = 7c/2 (Fig. 3b). 

According to relations (2.9) (2.10), (3.39) and (3.30) the directions of the phase and rayvelocityvectors 
satisfy the conditions 

in the segment (0, a-112) 

o<a,<p,<?c/2, q+'O (3.40) 

in the segments (0, e2) and (&, dFn2) 

Oca,c&ciki2. (p2>Q, &~P,~az~d2, (p2<0 (3.41) 

Hence it follows that the ray velocity vectors are deflected from the normal to the wave fronts towards 
increasing phase velocities. 

Case lc. If NJ c 0 and NS > 0 when Nr > 0, we have 

b>a, N,cO, N,>O, K,>O, M>O (3.42) 

In this case when Nr > ]N6 ] , it follows from relations (3.11) that Fj > 0 (i = 2, 4,5), Fr < 0, and Fj 
can have different signs; for values of Fi the first and third set of conditions (3.15) can be satisfied. 

When the first set of conditions (3.15) is satisfied, the derivatives of the functions Qk and Mk satisfy 
conditions (3.18). Taking inequalities (3.42) into account, we can conclude from relations (3.5) (3.18) 
and (3.22) that the functions Qk and Mk have the form shown in Fig. 3(c). 

When the third set of conditions of (3.15) is satisfied, the derivatives of the functions Qk and M, satisfy 
conditions (3.27). Taking inequalities (3.42) into account, it follows from relations (3.5) (3.27) and (3.22) 
that the graphs of functions Qk and Mk have the form shown in Fig. 3(c). The graph of the function Qr 
has the non-fundamental difference of a maximum of negative sign at the point 0,* on the segment 
(0, u-1’2). 

Consequently, when N4 < 0 and N5 > 0 when Ni > 0 the functions Qk and Mk on the segment 
(0, a?‘*) satisfy the conditions 

M,<Q,<o (3.43) 

and on the segment (0, Lu2) satisfy the conditions (3.30) 
In this case [lo] the phase velocities of the quasi-longitudinal waves inside the segment (0, u-1/2) have 

no extremal values; the maximum value is reached when 8i = 0 in the direction al = 0, and the minimum 
value is reached when 0 = u-l’ . m the direction al = 7r2 (Fig. 3~). The ph_ase velocities of the qua_si- 
transverse waves, as in the previous cases, have maximum values when 8 = t&, in the direction a2 = 1x2, 
and minimum values when 8 = 0 and 8 = au2 in the directions a2 = 0 and a2 = rc/2. 

It follows from relations (2.9), (2.10), (3.42) and (3.30) that the directions of the phase and ray velocity 
vectors of the quasi-longitudinal waves, unlike the previous cases, satisfy the conditions 

O<&ca,<lc/2, cp,<O (3.44) 
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The directions of the phase and ray velocity vectors of the quasi-transverse waves, as in the previous 
cases, satisfy conditions (3.41). 

Case 2. When N1 c 0, the derivatives in relations (3.12) satisfy conditions (3.13) with opposite signs 
of the inequalities. 

When N, c: 0 three combinations of values of N4 and Ns are possible. 

Case 2(a). If N4 c 0 and Ns c 0, the following conditions are satisfied 

N,<O, N,cO, N,cO, K,<O, M<O (3.45) 

From relations (3.8) (3.11) and inequalities (3.45) we have: F, < 0 (i = 2,4, 5), and Fi and F3 can 
have different signs. When & < 0 and M < 0, according to relations (3.8) and (3.9) the following 
combinations of the distribution of the values of Fj are possible 

F,>O, F,<F,<F,cF,<O 

F,.F,>O, F,<F,<F,<O (3.46) 

F,<FZ<Fq<F3<F,<0 

Repeating the discussions employed when analysing Case la, when the first set of conditions (3.46) 
is satisfied we obtain the following conditions for the derivatives of the functions Qk and Mk 

Q,,>O, M,,<Ov Q,,>O We;), Qze<O 
(e>efg, M,,>o (ece;), M,,CO (e>e$) 

(3.47) 

It follows from relations (3.5) and (3.22) and inequalities (3.47) that when the first set of conditions 
(3.46) is satisfied the graphs of the functions Qk and Mk have the form shown in Fig. 4(a). It can be 
shown that the form of the graphs of the functions Qk and Mk, when the second and third set of conditions 
of (3.46) are satisfied, is similar, with the exception of the minimum at the points 0; and et1 respectively 
of the graphs of the function Qi in the case of the second set of conditions and of the function M, in 
the case of the third set of conditions (3.46). 

Hence, when N4 c 0 and Ns < 0, in the intervals (3.1) the functions Qk and Mk satisfy the conditions: 
on the segment (0, LZ-~‘~) 

Q,<M,<O (edi,), M,<Q,<O (eA1) (3.48) 

on the segment (0, d-“2) 

M,>Q,>O (ed2), Q,>M,>O (e&j (3.49) 

It was established in [9] that when the conditions N4 c 0 and Ns <’ 0 are satisfied in$de the intervals 
(3.1), the phase velocities of the quasi-longitudinal waves have a maximum when 8 = 81, and the quasi- 
transverse waves have a minimum when 0 = e2, given by formulae (3.23). The points of intersection 
of the graphs of the functions Qk and Mk (Fig. 4a) correspond to the extreme points. 

According to relations (3.31)-(3.33), the quasi-longitudinal and quasi-transverse waves in the directions 
of the axes of elastic symmetryy andx of the medium and in the directions cxk =-&with extreme phase 
velocities, become purely longitudinal and purely transverse waves when 6 = 0,. 

According to formulae (2.9) and (2.10) and conditions (3.48) and (3.49), we have the following 
conditions for the directions of the phase and beam velocity vectors 

on the segment (0, u-l/2) 

OCU,C~~,, 45,, ff+>o (ed,), ii,q3,<t~,~1~/2, cp,<o (edi,) 

on the segment (0, &1’2) 

o<p2<~,<ii2, (P+O (e&j, ~~,ccx,<~~cA/~, (P+O (e>&) 

(3.50) 

(3.51) 
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Fig. 4 

In follows from conditions (3.50) and (3.51) that here, 

Y 
blR 
d” 

Y 
bin 

d” 

as in the previous case, the property of the 
ray velocity vectors (the energy fluxes) of deviating from the directions of the normals to the wave fronts 
towards an increase in the phase velocities is preserved. 

Case 2(b). If N4 > 0 and Ns < 0 when N1 < 0, then 

a>b, N6>0, N,<O, M<O (3.52) 

and Kz may have different signs. 
In this case, the graphs of the functions Qk and Mk when Kz > 0 have the form shown in Fig. 4(b), 

while when K2 < 0 they have a similar form, the graphs of the functions Q2 and A& which have maxima 
at the points t3,* and ely;, have only unimportant differences. 

Consequently, when N4 > 0 and Ns < 0, the functions Qk and Mk inside the intervals (3.1) satisfy 
the following conditions: 

on the segment (0, a-l’*) 

Q,<M,<O (3.53) 

on the segment (0, d’“) they satisfy conditions (3.49). 
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It was established in [lo] that, when the conditions N1 < 0, N4 > 0 and Ns < 0 are satisfied, the phase 
velocities of the quasi-longitudinal waves on the segment (0, a-1’2) increase continuously, and the phase 
velocities of the quasi-transverse waves have a minimum on the segment (0, d-“2) at the point 02 
(Fig. 4b). 

According to formulae (2.9) and (2.10) and conditions (3.53) and (3.49) the directions of the phase 
and ray velocity vectors satisfy the conditions 

on the segment (0,8’) 
O<a,c~i<rc/2, ‘9,>0 (3.54) 

on the segment (0, &‘1’2) they satisfy conditions (3.51). 
Case 2(c). When N4 < 0, N, > 0 and N1 c 0, the following conditions are satisfied 

b>a, N,cO, N,>O, K,<O (3.55) 

The quantity M can have different signs. 
When M > 0 the graphs of the functions Qk and Mk have the form shown in Fig. 4(c), and when 

M < 0 their form changes only slightly: the graph of the function M1 has a minimum at the point 0;. 
Consequently, when N4 < 0, N, > 0 and N1 c 0, the functions Qk and Mk on sections (3.1) satisfy 

the following conditions: 
on the segment (0, a-1’2) 

M,<Q,<O (3.56) 

on the segment (0, d-“2) they satisfy conditions (3.49). 
In this case, according to [lo], the phase velocities of the quasi-longitudinal waves on the segment 

(0, a-l’2 d ecrease continuously, while th_e phase velocities of the quasi-transverse waves on the segment 
(0,J” ) have a minimum at the point tZi2 (Fig. 4~). 

It follows from formulae (2.9) and (2.10) and conditions (3.56) and (3.49) that the directions of the 
phase and ray velocity vectors satisfy the following conditions: 

on the segment (0, a-1’2) 
o<p,<ol,<x/2, q,<o (3.57) 

on the segment (0, d-i”) they satisfy conditions (3.51). 
Hence, the results of an analysis show that when the conditions N2 > 0 and N, > 0 are satisfied in 

all the cases considered above, the functions Qk and Mk inside the intervals (3.1) satisfy the inequalities 

Q,<O, M,<O, Q2>0, M,>O (3.58) 

It follows from relations (2.4) (3.4) and (3.58) that 

s,,>o, &,a s,,>o, s,,<o (3.59) 

Consequently, when N2 > 0 and Ns > 0 the projections of the energy flux density vectors (2.4) of 
the quasi-longitudinal waves (k = 1) and quasi-transverse waves (k = 2) (1.3), determined in sections 
(3.1), have the following directions: S,, and S,, are directed along thex axis, and Syl and srz are directed 
along the negative y semi-axis. 

4. ANALYSIS OF THE SOLUTIONS WHEN N2 > 0 AND NJ < 0 
When N2 > 0 the solutions are determined on the Riemann surface shown in Fig. 1. When N, > 0 and 
Ns < 0 the following conditions are satisfied 

a > b, N,<O, N,<O, K,<O, M<O (4.1) 

The quantity Nh can have different signs. 

The Case N6 < 0. When a > b we have 

(N,lcIN,1cIN,1, (c2-d’)>ad>bd (4.2) 
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Fig. 5 

We conclude from relations (3.11), (4.1) and (4.2) that Fr > 0, Fi < 0 (i = 2, 4,5), and F3 can have 
different signs. According to relations (3.8) and (3.9) when F3 < 0 the values of Fj satisfy the first set 
of conditions (3.46) and when F3 > 0 the values of Fj satisfy the second set of conditions (3.46). When 
the first set of conditions (3.46) is satisfied, the derivatives of the functions Qk and Mk satisfy conditions 
(3.47). 

Taking into account the fact that N6 c 0, N7 c 0 and Ns c 0, we conclude from relations (3.5), (3.22) 
and (3.47) that the graphs of the functions Qk and Mk have the form shown in Fig. 5. It can be shown 
that when the second set of conditions (3.46) is satisfied the graphs of the functions Qk and Mk have a 
similar form, and only the graph of the function Q,, which has a minimum at the point f$i, is different. 

Consequently, the functions Qk and Mk on sections (3.1) satisfy the following conditions 
on the segment (0, a-1’2) - conditions (3.48) 
on the segment (0, du2) 

Q2<0, M,>O (e<e,), M,>Q,>O (&,<tk&), Q,>M,>O (Cb&) (4.3) 

It follows from relations (2.9), (2.10) and (2.3) and (4.3) that the directions of the phase and ray velocity 
vectors of the quasi-longitudinal waves satisfy conditions (3.50) and the quasi-transverse waves satisfy 
the following conditions 

on the segment (0, (3,) 
a,>% p*<o, ‘pz = -@5+p2po (4.4) 

on the segment (&, Ju2) they satisfy conditions (3.51). 
At the boundaries of the segment (0, es), by formulae (2.9) and (2.10) when k = 2, the angles which 

determine the directions of the phase and ray velocity vectors of the quasi-transverse waves have the 
following values: a2 = p2 = (p2 = 0 when 8 = 0 and a2 > 0, p = 0 and cp2 = -a2 when 8 = ea. 

Consequently, when 8 = 0 and 8 = t3a the ray velocity vectors of the quasi-transverse waves are directed 
along the negative y semi-axis. 

It follows from conditions (4.4) that the quasi-transverse waves, defined on the segment (0, e,), unlike 
the previous cases, propagate for positive angles a2 of the phase velocity vectors with negative values 
of the angles e2 of the ray velocity vectors. This feature has a direct connection with the existence on 
the wave fronts of the quasi-transverse waves of point sources of acute-angle edges, which propagate 
in the direction of they axis when the conditions N3 < 0 are satisfied for the constants of elasticity 
[7, 81, and is the reason for the formation of acute-angle edges. 

i?he case N6 > 0. Repeating the discussion carried out when analysing Case 2b, and taking into account 
the inequality Ns < 0, it can be shown that the graphs of the functions Qr and Mi have the form shown 
in Fig. 4(b), while the graphs of the functions Q2 and M2 have the form shown in Fig. 5. Consequently, 
in the intervals (3.1) the functions Qi and M1 satisfy conditions (3.53), while the functions Q2 and M2 
satisfy conditions (4.3); The directions of the phase and ray velocity vectors of the quasi-longitudinal 
waves satisfy conditions (3.54), while the quasi-transverse waves on the segment (0,(&J satisfy conditions 
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Fig. 6 

(4.4), on the segment (O,, &) they satisfy the first set of conditions (3.51) and on the segment (%, &r”) 
they satisfy the second set of conditions (3.51). 

It follows from relations (2.4), (3.4), (3.48), (3.53) and (4.3) that when Nz > 0 and N3 < 0 in the 
intervals (3.1), the projections of the energy flux density vectors onto the coordinate axes satisfy the 
conditions 

s,,>o, s/o, s,,co (0<9,), s,,>o (e>e,), sy*<o (4.5) 

Hence it follows that, unlike conditions (3.59), when N2 > 0 and Ns > 0, the projections & of he 
energy flux density vectors of the quasi-transverse waves, defined on the segment (0, O,), are directed 
along the negative x semi-axes. When 8 = 0 and 8 = O0 the projections S,.. = 0 of the energy flux density 
vector are directed along the negative y semi-axis. 

5. ANALYSIS OF THE SOLUTIONS WHEN N2 < 0 AND N3 < 0 

When Nz < 0 the solutions are defined on the Riemann surface, shown in Fig. 2. The waves (1.3) 
propagating in the directions 0 c elk s II/~, are defined on the following parts of the Riemann surface 
[6]: the quasi-longitudinal waves (k = 1) on the segment (0, u-ri2) of the upper edge of the cut (+I-“‘, 
+a-““) of the 8r plane, and the quasi-transverse waves when (k = 2) on the segment (0, 07) of the upper 
edge of the cut (-07, +@) of the tZr2 plane, and when (k = 1) on the lower edge of the cut (+@, +@) 
of the 8, plane. 

Since the conditions N4 < 0 and Ns c 0 are satisfied when N2 < 0 and N3 =z 0, according to the results 
obtained earlier in [lo, 111 the graphs of the phase velocities have the form shown in Fig. 6. On the 
graph of the phase velocities of the quasi-transverse waves the points indicate value of the velocities 
corresponding to the boundaries of the segments (d “2 8’ r) in the t3r and Cl2 planes of the Riemann surface 
(Fig. 2): 1 - the point 8 = d-r” in the El2 plane, 2 - the branch point 0:. and 3 - the point 0 = d-t’* in 
the 8, plane. 

According to relations (1.5) and (3.45) the positive real branch point of the inner radical of functions 
( 1.4) corresponds to the value 

ey = ~~M-(-~~~~~N,)~‘~~(K~K~)-‘~“~ (5.1) 

On the upper edge of the cut (-@, +t$) of the e2 plane (Fig. 2) the function A2 and B2 are given by 
expressions (3.6) when k = 2. When going round the branch point t37 in a clockwise direction from the 
lower edge of the cut (-Cry, +@) of the O2 plane on the upper edge of the cut (+d-1’2, +@) of the 8, 
plane, the functionsA andB2 take values ofAl and&, given by expressions (3.6) with k = 1. Similarly, 
the functions Q2 and M2, defined by expressions (2.5) when k = 2d on changing from the lower edge 
(-07, +@) of the e2 plane to the upper edge of the cut (d-t”, +9,) of the 8, plane, take Qt and MI, 
defined by expressions (2.5) with k = 1. 
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Repeating the discussions used when analysing Case 1, and taking into account the fact that when 
N2 < 0 and Ns < 0, conditions (3.45) are satisfied, it can be shown that the graphs of the functions Qk 
and Mk have the form shown in Fig. 6. 

Consequently, the functions@ and Mk on the segments (0, K”~) and (0, (3:) of the upper edges of 
the cuts (a-“*, +u-“~) and (--On +@) of the 8’ and e2 planes and on the lower edge of the cut ( +d”2, 
-t@) of the 8’ plane satisfy the following conditions: 

on the segment (0, a-“2) - conditions (3.48) 
on the segment (0, 0:) - conditions (4.3) and 
on the segment (d-l”, 0:) 

e,>o, M,<O (5.2) 

At the point 6, we have Q2 = Mz, and at the branch point f3: we have Qz = Q’ and I@ = M’ = 0. 
According to formulae (2.9) and (2.10) and relations (3.48), (4.3) and (5.2) the directions of the Phase 

and ray velocity vectors of the quasi-longitudinal waves (k = l), defined on the segment (0, a- ‘2) of 
the 8’ plane, and of the quasi-transverse waves, defined with k = 2 on the segment (0, 07) of the e2 
plane, and with k = 1 on the segment (d- 1’2 8’ of the 8’ plane, satisfy the following conditions , ‘) 

on the segment (0, u-“~) - conditions (3.50), 
on the segment (0, f3e) - conditions (4.4), 
on the segment (@a, @) - conditions (3.51), and 
on the segment (d-“‘, 0:) 

pl >d2, d2>a, ~,(e$ = a,(e$, cp, >o (5.3) 

According to relations (4.4) the quasi-transverse waves (k = 2), defined on the segment (0, 0a), 
propagate with positive angles a2 of the phase velocity vectors for negative values of the angles pz of 
the ray velocity vectors, where the angles p2 = 0 at the boundaries of the segment (0, 0a), i.e. the directions 
of the ray velocity vectors coincide with the direction of the negative y semi-axis. This explains the reason 
for the formation on the wave fronts of the quasi-transverse waves of point sources of acute-angled 
edges, which propagate in the direction of the axis of symmetryy when N3 < 0 [7, 81. 

It follows from relations (5.3) that the directions of the phase and ray velocity vectors of the quasi- 
transverse waves (1.3), defined with k = 1 on the segment (L “2, @) of the 8’ plane of the Riemann 
surface, satisfy the conditions al c x/2 and p’ > x/2. On the boundaries of the segment (d”2, 0:) the 
angles p’ have the same values of rc/2, and consequently, at these points the directions of the ray velocity 
vectors of the quasi-transverse waves coincide with the direction of the positivex semi-axis. This explains 
the reason for the formation on the wave fronts of the quasi-transverse waves of point sources of acute- 
angled edges, propagating in the direction of the x axis of symmetry when N2 < 0 [7,8]. 

When N2 < 0 and Ns < 0, as in the previous cases, in the directions of the axes of elastic symmetry 
of the medium and in the directions al and a2 with extreme phase velocities the quasi-longitudinal and 
quasi-transverse waves become purely longitudinal and purely transverse waves. 

Since the conditionsp2 > 0 andp’ > 0 are satisfied on the segments (0, 07) of the e2 plane and (d”2,8~) 
of the 8’ plane respectively, then by relations (2.4), (4.3) and (5.2) the projections of the energy flux 
density vectors of the quasi-transverse waves (1.3) with k = 2 and k = 1 onto the coordinate axes satisfy 
the following conditions: 

on the segment (0, 07) 

~,,-a s,,<o me,), s,,>o, s,,<o (e>e,) (5.4) 

on the segment (d-l’*, @) 

s,, >o, s,, P-0 (5.5) 

Consequently, when N2 < 0 and Ns < 0, as in the previous case (N2 > 0, Ns < 0), the directions of 
the projections S, and S,, of the energy flux density vectors of the quasi-transverse waves (k = 2), defined 
on the segment (0, 0,) of the e2 plane, coincide with the directions of the negative x and y semi-axes. 
The directions of the projections &’ and S,’ of the energy flux density vectors of the quasi-transverse 
waves (k = l), defined on the segment (6 “, 0:) of the 8’ plane, unlike all the cases previously considered, 
coincide with the directions of the positive x and y semi-axes. 
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Fig. 1 

6. ANALYSIS OF THE SOLUTIONS WHEN N2 < 0 AND N3 > 0 

In this case, unlike the preceding case, the following conditions are satisfied 

b>a, N,<O, N,<O, McO, K,<O 

The quantity N7 can have different signs. 

(6-l) 

If N7 > 0, then when N2 c 0 and Ns > 0, according to conditions (6.1), the conditions Nt <: 0, 
N4 < 0 and Ns > 0 are satisfied. In this case the graphs of the phase velocities and of the functions Qk 
and Mk have the form shown in Fig. 7. 

By formulae (2.9) and (2.10) and the graphs of the functions Qk and Mk the directions of the phase 
and ray velocity vectors of the quasi-longitudinal and quasi-transverse waves satisfy conditions (3.57) 
on the segment (0, a-l” ‘J, 
on the segment (d-*j2, 0,). 

satisfy conditions (3.51) on the segment (0, @), and satisfy conditions (5.3) 

When N7 < 0 the conditions N4 < 0 and Ns < 0 are satisfied. In this case the graphs of the functions 
Q1 and Mt and of the phase velocities of the quasi-longitudinal waves, defined on the segment (0, a-1’2), 
have the form shown in Fig. 6. The graphs of the functions 
and of the function Q, and Mt, defined on the segment 

Q2 ;nd M2, defined on the segment (0, @), 
(d-r’ ,0i), and the phase velocities of the quasi- 

transverse waves have the form shown in Fig. 7. 
Consequently, when N7 < 0, the directions of the phase velocity and ray velocity vectors of the quasi- 

longitudinal waves, defined on the segment (0, a-‘“), and of the quasi-transverse waves, defined on the 
segments (0, 0:) and 66 , t), 1’2 0’ satisfy conditions (3.50) on the segment 10, a-f’2), satisfy conditions (3.51) 
on the segment (0, et), and satisfy condition (5.3) on the segment (d- ‘2, @. 

When N2 c 0 and Ns > 0, the projections of the energy flux density vectors of the quasi-longitudinal 
waves onto the coordinate axes satisfy conditions (4.8); for the quasi-transverse waves they satisfy the 
conditions S,, > 0 and S 2 < 0 on the segment (0, 0:) of the e2 plane, and they satisfy conditions (5.5) 
on the segment (d- 1’2, ec;’ of the et plane. 

Hence, we have obtained a complete solution of the problem of investigating the behaviour of the 
propagation of the energy of elastic waves as a function of the directions of motion of the waves and 
the ratios of the constants of elasticity of the media for all practical anisotropic media of the class 
considered. 
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